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  Abstract   Previous studies have applied Arti fi cial Neural Networks (ANNs) 
successfully to bioacoustic problems at different levels of analysis (individual and 
species identi fi cation, vocal repertoire categorization, and analysis of sound struc-
ture) but not to nonhuman primates. Here, we report the results of applying this tool 
to two important problems in primate vocal communication. First, we apply a super-
vised ANN to classify 222 long grunt vocalizations emitted by  fi ve species of the 
genus  Eulemur.  Second, we use an unsupervised self-organizing network to identify 
discrete categories within the vocal repertoire of black lemurs ( Eulemur macaco ). 
Calls were characterized by both spectral (fundamental frequency and formants) 
and temporal features. The result show not only that ANNs are effective for study-
ing primate vocalizations but also that this tool can increase the ef fi ciency, objectiv-
ity, and biological signi fi cance of vocal classi fi cation greatly. The advantages of 
ANNs over more commonly used statistical techniques and different applications 
for supervised and unsupervised ANNs are discussed.  

  Resume   Des études antérieures ont appliqué avec succès les Réseaux Neuronaux 
Arti fi ciels (RNA) aux questions bioacoustiques (reconnaissance individuelle et 
inter-spéci fi que, catégorisation des répertoires vocaux, et analyse des structures 
sonores), mais pas sur les primates non-humains. Ici nous appliquons cet outil à 

    L.   Pozzi   (*)
     Department of Anthropology, Center for the Study of Human Origins ,  New York University ,
  25 Waverly Place ,  New York   10003 ,  NY ,  USA    
e-mail:  luca.pozzi@nyu.edu  

     M.   Gamba   •     C.   Giacoma  
     Dipartimento di Biologia Animale e dell’Uomo ,  Università degli Studi di Torino ,
  Via Accademia Albertina, 13 ,  10124   Torino ,  Italy    
e-mail:  marco.gamba@unito.it  ;   cristina.giacoma@unito.it   

    Chapter 34   
 Arti fi cial Neural Networks: A New Tool 
for Studying Lemur Vocal Communication       

      Luca   Pozzi      ,    Marco   Gamba      , and    Cristina   Giacoma         



306 L. Pozzi et al.

deux problèmes concernant la communication vocale des Primates. Premièrement, 
nous utilisons un modèle de RNA « supervisé » à la classi fi cation de 222 « grogne-
ments longs » émis par 5 espèces du genre  Eulemur . Deuxièmement, nous utilisons 
un modèle auto-organisé « non supervisé » de RNA pour identi fi er des catégories 
discrètes dans le répertoire vocal du lémur Macaco ( Eulemur macaco ). Les vocali-
sations sont caractérisées par leurs propriétés spectrales (fréquence fondamentale et 
formant) et temporelles. Les résultats montrent que les RNA sont des outils ef fi caces 
pour l’étude des vocalisations des primates, mais aussi que cette méthode qui accroit 
l’ef fi cacité, l’objectivité, et la signi fi cation biologique des classi fi cations vocales. 
Les avantages des RNA sur d’autres méthodes communément utilisées, ainsi que 
différentes applications des RNA supervisées et non supervisées sont discutés.      

   Introduction 

 Identifying discrete categories is one of the most challenging problems in bioacous-
tics. In studies of animal communication, the classi fi cation of vocal signals into 
discrete categories is a preliminary step to comparing acoustic variability at differ-
ent levels of analysis (de fi nition of vocal repertoires, identi fi cation of species or 
individuals, analysis of call structure, etc.). Unfortunately, current statistical meth-
ods do not always give satisfactory results, particularly when the data are nonlin-
early distributed (Demuth and Beale  1993  ) . Moreover, most statistical techniques 
involve a number of a priori assumptions that may affect the objectivity of the 
classi fi cation and, therefore, the comparison of results between studies. 

 In recent years, many attempts have been made to develop mathematical tools 
for automatic and “objective” classi fi cation. Arti fi cial Neural Networks (ANNs) 
have been widely used in the  fi eld of pattern recognition and have been applied suc-
cessfully within the biological sciences to model complex functions and solve prob-
lems of classi fi cation, regression, and prevision (Ghirlanda and Enquist  1998  ) . 

   The Theory of Arti fi cial Neural Networks: Structure and Function 

 ANNs are computer simulations of biological nervous systems and mimic their 
fault-tolerance and learning capacity by modeling the low-level structure of the 
brain. Although this technique cannot reach the complexity of most biological ner-
vous systems, it provides a powerful classi fi catory tool on account of its ability to 
learn a speci fi c classi fi cation scheme and deal with incomplete or noisy data. 

 ANNs can be classi fi ed into two main groups: s upervised  and  unsupervised  neu-
ral networks. The operation of a supervised neural network can be divided into two 
phases (1)  learning , in which the network is trained to recognize different output 
categories ( targets ) and (2)  generalization , where the network autonomously 
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classi fi es a new set of previously unseen data according to the classi fi cation scheme 
acquired during the previous phase. Unlike supervised ANNs, unsupervised net-
works do not require a priori de fi nition of output categories, and the process of 
classi fi cation is based on local information only. The network is thus able to self-
organize data, to detect patterns in inputs autonomously, and to classify them into 
categories without requiring the number or types of categories to be prede fi ned 
(Kohonen  1988  ) .  

   Application of ANNs to Bioacoustic Problems 

 Because of their ability to model complex functions, ANNs have been used to 
address several issues in animal bioacoustics. The main applications of ANNs in 
this  fi eld have been to human speech, but they have also been applied to a variety of 
animal vocalizations. ANNs have been successfully applied to categorization of 
species’ vocal repertoires (whales: Mercado and Kuh  1998 ; Murray et al.  1998  ) , 
individual (sea lions: Campbell et al.  2002 ; deer: Reby et al.  1997 ; birds: Adi et al. 
 2010  )  and species identi fi cation (insects: Chesmore  2004 ; Chesmore and Ohya 
 2004 ; birds: Derégnaucourt et al.  2001 ; Lopes et al.  2011 ; bats: Parsons  2001 ; 
Jennings et al.  2008  ) , and studies of the acoustic structure of vocalizations (birds: 
Dawson et al.  2006 ; Nickerson et al.  2006 ; whales: Green et al.  2011  ) . 

 To date, the application of this computational technique in the study of nonhu-
man primate utterances has been extremely limited. Zimmermann  (  1995  )  suggested 
neural network modeling as a tool for the analysis and interpretation of primate 
sounds but did not perform any experimental studies using the technique. Recently, 
we applied ANNs to the study of the vocal repertoire of black lemurs,  Eulemur 
macaco  (Pozzi et al.  2010  ) , and demonstrated the ability of supervised ANNs 
to classify lemur vocalizations into discrete categories with 94% correct predic-
tion overall. In this chapter, we explore this approach further for classifying 
 primate vocalizations, speci fi cally (1) to differentiate the calls of different  Eulemur  
species and (2) to categorize the vocal repertoire of black lemurs using unsuper-
vised ANNS.   

   Materials and Methods 

   Application of Supervised ANNs to Differentiate 
 Eulemur  Species Vocalizations 

 A sample of 222 long grunts emitted by  Eulemur macaco  (115),  E. mongoz  (33), 
 E. coronatus  (23),  E. rubriventer  (16), and  E. fulvus  (35) was randomly selected 
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from a larger data set recorded between 1995 and 2005 [see Gamba and Giacoma 
 (  2005  )  for recording techniques]. This vocal type was chosen because (1) it is pres-
ent in the vocal repertoire of all lemurid species (Macedonia and Stanger  1994 ; 
Gamba and Giacoma  2005  ) ; (2) it is emitted by all species at a high rate, providing 
a good sample for the analyses; and (3) previous studies have demonstrated that 
long grunts are species speci fi c (Gamba and Giacoma  2005  ) . The different rates of 
long grunt emission across the  fi ve species and the need for good sound quality 
biased the number of recordings included in the sample. However, ANNs are not 
in fl uenced by unbalanced numbers in different groups, only by the number of inputs 
during the training phase (Pozzi et al.  2010  ) . 

 Each vocalization was split into a series of very short duration (0.01 s) nonover-
lapping time windows, and 30 windows were sampled at regular intervals. The aver-
age duration of each vocalization was 0.521 s (SD 0.145 s), meaning that most 
vocalizations had approximately 50 windows. Vocalizations shorter than 0.30 s 
were excluded from the analysis. The inputs for the ANNs were two-dimensional 
characterizations of long grunts, in which each signal was described by a combina-
tion of pitch (   F 0 ) and the  fi rst four formants (i.e., spectral peaks), F 1 –F 4 . Each vec-
tor was constructed by concatenating the  fi ve 30-element vectors into a single 
150-element vector and served as inputs into a supervised arti fi cial neural network 
using a back-propagation algorithm during the training phase. Neural network anal-
yses were performed using Statistica Neural Networks 7.1 (StatSoft, Trajan Software 
Ltd 1996–2000).  

   Identi fi cation of Distinct Calls Within the  Eulemur macaco  
Vocal Repertoire Using an Unsupervised ANN 

 A total of 311 vocalizations including seven different vocal types (alarm calls, 
grunted hoots, hoots, grunts, long grunts, long grunt clear calls, and tonal calls) 
described in previous studies (Gosset et al.  2002 ; Macedonia and Stanger  1994  )  was 
used in the study. Each vocalization was characterized by a 10-element vector: three 
elements each corresponding to measurements of fundamental frequency (F 0 ) and 
the  fi rst two formants (F 1  and F 2 ) at three different points (at the beginning, middle 
and end of the signal), and one element corresponding to duration. These vectors 
were the inputs for an unsupervised ANN (Self-Organizing Neural Network or 
SONN). Analyses were performed using both Matlab 7.0 (Matlab Neural Network 
Toolbox, Demuth and Beale  1993  )  and Statistica Neural Networks 7.1 (StatSoft, 
Trajan Software Ltd, 1996–2000). 

 Because unsupervised ANNs do not require target categories to be de fi ned a pri-
ori, the architecture of the network has been characterized as a trial-and-error proce-
dure (protocol described in Murray et al.  1998  ) . We tested 12 networks using 
different combinations of learning rate (0.01 and 0.03), numbers of iterations (5,000 
and 10,000), and numbers of neurons (40, 20, and 10). The number of units in a 
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SONN can be taken as the maximum number of potential categories that the network 
can identify during a training session. For each run, we analyzed the number of 
neurons activated that correspond to the number of categories recognized by the 
system of classi fi cation. The output neurons activated during the analysis represent 
the number of categories recognized by the network. To match these categories to 
the vocal types de fi ned a priori for the black lemur vocal repertoire, we analyzed the 
weight vectors of each activated unit: the pattern of the spectral values (F 0 –F 2 ) and 
the call durations were compared with the vocal repertoire description to assess 
concordance between the network results and the categories previously recognized.   

   Results 

   Application of Supervised ANNs to Differentiate 
 Eulemur  Species Vocalizations 

 We applied a one-hidden layer network with 70 units and 1,000 epochs (Fig.  34.1 ); 
this topology was the best network in the preliminary analyses, with 98% correct 
classi fi cations in the training phase and 81% in the test.  

 The data set was randomly divided into a training (67% signals) and a test set 
(33%), and the analyses were run independently 15 times. The percentage correct 
prediction during the test phase varied from 67% in  E. coronatus  to 99% in 
 E. macaco . The means and standard deviations for all vocal types analyzed are 
reported in Table  34.1 : four out of  fi ve species were recognized with >80% correctly 
classi fi ed signals. The overall average reliability of the network was 89%.   

  Fig. 34.1    Structure of the arti fi cial neural network used in this study       
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   Identi fi cation of Distinct Calls Within the  Eulemur macaco  
Vocal Repertoire Using an Unsupervised ANN 

 The weight vectors resulting from each activated unit in the analysis are shown in 
Fig.  34.2 . The  x- axis represents the ten elements making up the vectors, while the 
normalized  z -scores are on the  y- axis. Zero represents the mean, and values above and 
below zero are deviations from the mean. All networks but one identi fi ed  fi ve dif-
ferent categories. We thus compared the resulting  fi ve weight vectors with the sound 
structure of the different vocal types. The association between the weight vectors 
and the vocal categories recognized by the network is represented in Fig.  34.2 . 
The  fi ve categories recognized by the unsupervised neural networks are: 

    1.     Alarm call , represented by the weight vector W1, shows long duration and high 
frequency values in spectral parameters (above the mean).  

    2.     Long grunt,  represented by the vector W2, is characterized by low fundamental 
frequency and formant values and by long duration.  

    3.     Tonal  or  clear calls  (weight vector W3) have relatively high spectral values and 
average duration (around zero).  

    4.    The composite vocalization  long grunt clear call  (W4) is made up of two parts: 
the  fi rst similar to the  long grunt  category (low spectral parameters) and the sec-
ond with very high fundamental frequency and formant values.  

    5.    A combined category including  hoot ,  grunt,  and  grunted hoot  (W5) has a spec-
tral structure similar to the category 2  long grunt  (low F 0  and formant values) but 
is of much shorter duration.       

   Discussion 

 ANNs are widely used in bioacoustics to address numerous problems, but ours are 
the  fi rst applications of ANNs to nonhuman primate vocalizations. We applied dif-
ferent network typologies to address two common issues in the study of primate 
communication (1) the identi fi cation of closely related species and (2) the categori-
zation of a species’ vocal repertoire. The supervised network in the  fi rst case study 
distinguished  fi ve  Eulemur  species with an overall performance of almost 90%. 

   Table 34.1    Number of signals, correct classi fi cations (mean performance) and standard deviation 
for each of the  fi ve species within the genus  Eulemur  resulted in the application of the supervised 
neural network with 70 hidden units   

  E. macaco    E. fulvus    E. mongoz    E. coronatus    E. rubriventer  

  N   115  35  33  23  16 
 Mean performance  99.42  84.44  80.00  66.67  84.00 
 Standard deviation  1.18  14.17  11.34  14.95  17.24 
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The unsupervised ANN used to categorize the black lemur vocal repertoire recog-
nized  fi ve out of the seven vocal types de fi ned a priori. The remaining two types 
( grunted hoot  and  hoot ), with very similar structure, were merged under a larger 
category with  grunts . This result is probably due to the relatively low number of 
appropriate signals in our sample. 

  Fig. 34.2    Results of the SONN: the 10-element weight vectors of each of the  fi ve units resulting 
from the supervised network analysis. Zero ( y- axis) represents the grand mean for each dimension 
(normalized  z  scores). Values above and below zero represent deviations from the mean. Each 
weight vector is associated with one or more of the call typologies recognized in this study (see the 
text for details).  LG  long grunt,  LGCC  long grunt clear call,  G  grunt,  GH  grunted hoot,  H  hoot       
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 Our study shows that ANNs provide an effective tool for acoustic categorization 
and have several advantages over other systems of classi fi cation. First, our approach 
requires fewer a priori assumptions than other statistical methods, reducing the 
degree of subjectivity in the classi fi cation procedure. Second, ANNs can deal with 
incomplete or noisy data, which is especially important in biological classi fi cation 
tasks, where unambiguous, discrete categories are often dif fi cult to de fi ne. Finally, 
ANNs allow researchers to develop automatic or semiautomatic acoustic screening 
of animal vocalizations. 

 Our use of both supervised and unsupervised networks allows us also to draw 
some conclusions regarding their advantages and constraints for primate call 
classi fi cation. The application of supervised learning systems is obviously more 
ef fi cient in recognizing discrete categories but requires the de fi nition of a priori 
categories during the learning phase and is therefore more prone to subjective 
choices. Since ANNs are able to detect a classi fi cation rule autonomously during the 
learning phase and to reduce the noise in the signals, supervised ANNs are extremely 
powerful at classifying vocalizations into previously de fi ned categories, even with 
low quality recordings (Placer and Slobodchikoff  2000  ) . The main advantage of 
supervised ANNs is that these networks can be trained on a well-de fi ned set of sig-
nals and then used to classify previously unseen records (Pozzi et al.  2010  ) . Such 
networks are thus better suited to classi fi cation tasks where some aspect of pattern 
is already known. On the other hand, unsupervised ANNs (SONNs) are capable of 
detecting regularities and classifying inputs into discrete categories without num-
bers and types of outputs being de fi ned a priori. Unsupervised neural networks 
reduce the role of the external operator in the classi fi cation process, increasing the 
objectivity of the classi fi cation system. SONNs are thus excellent for classi fi cation 
where no a priori knowledge of vocalizations is available (Murray et al.  1998  ) . 

 The great potential of this approach indicates that more effort should be directed 
towards the development of neural networks to classify complex signals emitted by 
nonhuman primates. Such applications may be used to clarify various aspects of 
primate vocal behavior when discrete categories are hard to de fi ne using more con-
ventional techniques. The integration of behavioral and statistical approaches with 
ANNs can increase greatly the ef fi ciency, objectivity, and biological signi fi cance of 
vocal classi fi cation, and so advance our efforts to understand the evolution of vocal 
behavior in nonhuman primates.      
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