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In Piedmont (Italy) the environmental changes due to human impact have had profound effects on rivers and
their inhabitants. Thus, it is necessary to develop practical tools providing accurate ecological assessments of
river and species conditions. We focus our attention on Salmo marmoratus, an endangered salmonid which is
characteristic of the Po river system in Italy. In order to contribute to the management of the species, four
different approaches were used to assess its presence: discriminant function analysis, logistic regression,
decision tree models and artificial neural networks. Either all the 20 environmental variables measured in
the field or the 7 coming from feature selection were used to classify sites as positive or negative for
S. marmoratus. The performances of the different models were compared. Discriminant function analysis,
logistic regression, and decision tree models (unpruned and pruned) had relatively high percentages of
correctly classified instances. Although neither tree-pruning technique improved the reliability of the models
significantly, they did reduce the tree complexity and hence increased the clarity of the models. The artificial
neural network (ANN) approach, especially the model built with the 7 inputs coming from feature selection,
showed better performance than all the others. The relative contribution of each independent variable to this
model was determined by using the sensitivity analysis technique. Our findings proved that the ANNs were
more effective than the other classification techniques. Moreover, ANNs achieved their high potentials when
they were applied in models used to make decisions regarding river and conservation management.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Globally, freshwaters are rapidly deteriorating and hence these
systems are receiving increasing attention (Allan and Flecker, 1993;
Matson et al., 1997; Postel, 2000). In Italy, and especially in Piedmont,
there has been considerable impact of human activities on rivers.
Nutrient balances have been altered bothwith agricultural run-offs and
urban sewage discharges. Sediment inputs have increased through a
combination of deforestation, floods, and road building. These changes
have had profound effects on rivers and their inhabitants. Thus, there is
a need for the development of practical tools providing accurate
ecological assessments of river and species conditions, ultimately in
order to develop measures allowing habitat and species preservation.
Moreover, we need to find out in depth the relationship between the
environment and the occurrence of the organisms inhabiting rivers and
streams. This is fundamental for conservation management and river
restoration. To reach these goals, modeling is becoming a more and
more important tool for perfecting decision-making and management
policies.
+39 011 6704508.

l rights reserved.
Freshwater modeling has made substantial progress over the last
decade. Still, these ecosystems are very complex and hence hard to
understand despite the substantial improvements made in ecosystem
modeling and computation (Recknagel, 2002) and despite the
development of highly reliable models.

Over the last several years, researchers have been applying
machine learning methods to ecology more and more (Lek and
Guégan, 1999; Debeljak et al., 2001; Recknagel, 2001; Dzeroski and
Todorovski, 2003; Dakou et al., 2007; Goethals et al., 2007; Lencioni
et al., 2007; Pivard et al., 2008). In fact, ecosystems characteristically
show highly complex nonlinear relationships among their input
variables. Thus machine learning techniques offer several advantages
over traditional statistical analysis. Principally, they introduce fewer
prior assumptions about the relationships among the variables. There
are many machine learning techniques that could be applied, but
decision trees (Quinlan, 1986), artificial neural networks (Lek and
Guégan, 1999), fuzzy logic (Barros et al., 2000), and Bayesian belief
networks (Adriaenssens et al., 2004) are seemingly the most effective
for habitat suitability modeling, as has been demonstrated (Goethals
and De Pauw, 2001; Dakou et al., 2007).

In the present study we focus our attention on the marble trout
Salmo marmoratus (Cuvier, 1817), an endangered salmonid that can be
distinguished from other Salmo species on the basis of its color pattern
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and morphology (Delling, 2002). Its range is restricted to southern
Switzerland, northern Italy and the Adriatic basin of Slovenia, Croatia,
Montenegro and Albania. In Italy, it is characteristic of the Po River
system. The primal home range includes the left feeders of the Po River,
the Tanaro River and some direct tributary basins of the northern
Adriatic Sea. This home range is slowly but inexorably contracting. The
upper courses of Alpine rivers and streams, which represent its typical
habitat, nowadays show very few specimens belonging to this species.
The decreasing presence of S. marmoratus is mainly due to repeated
stocking with fish-farm stocks originating from the Atlantic side (Salmo
trutta fario), causing hybridization (Gandolfi et al., 1991; Giuffra et al.,
1996), due to water drawing, due to the alteration of river bottoms, and
due to pollution.

Since the populations started to decline in the early 1900s and are
presently still threatened, S. marmoratus is listed in the Annex II of the
European Union Habitats Directive 92/43/CEE and in the Red List
(IUCN, 1996).

Piedmont Region started some years ago to conduct fish fauna
management, with the main aim of restoring, where possible, suitable
habitats for the autochthonous fish communities. For this reason, the
Piedmont Region passed a Regional Law (L.R. number 37 dated 29/12/
06), which lays down new regulations specifically for the management
of aquatic fauna, habitat and fishing. In particular, this law provides for a
series of activities aimed at re-establishing consistent populations of
native species. The first and most important species that needs to be
conserved is S. marmoratus.

The present study aims at evaluating the reliability of various
current classification techniques in modeling the presence/absence of
S. marmoratus and at comparing how these techniques perform in
relationship to each other. We used varieties of multivariate statistics
and of the machine learning approach — in the former case, dis-
criminant function analysis and logistic regression and, in the latter,
classification and regression trees and artificial neural networks.

Of the machine learning techniques, artificial neural networks
have been used quite often in ecological modeling during the last
15 years (e.g.: Lek et al., 1996; Lek and Guégan, 1999; Scardi, 1996,
2001; Mastrorillo et al., 1997; Paruelo and Tomasel, 1997; Recknagel
et al., 1997; Manel et al., 1999a, 2001; Tourenq et al., 1999; Maier and
Dandy, 2000; Brosse et al., 2001; Reyjol et al., 2001; Olden, 2000,
2003; Olden and Jackson, 2001, 2002; Olden et al., 2002; Joy and
Death, 2004; Oakes et al., 2005). In contrast, decision trees have been
used sporadically (see Dakou et al., 2007). All four techniques were
applied on a dataset of 198 samples collected in different sites in
Piedmont.

Such models do not require researchers to have knowledge in
detail of the properties of the studied system, but generally they do
require that researchers have some knowledge in order to then
formulate the model and some data in order to calibrate it.
Researchers must already have some previous information on the
system's behavior in order to derive such a model. On the other hand,
ANNs do not require researchers to have any a priori knowledge of the
underlying system itself. Yet, they are computational tools that can
represent complex nonlinear systems. ANNs combine nonlinear
functions of inputs in order to model a determined output. The
combination of functions is optimized by training the network in
order to best match the output of the network with the desired value
(Haykin, 1999). The ANN approach mimics the synaptic processes in
the brain. ANNs are able to adapt themselves dynamically to highly
complex problems, reproducing the dynamic interaction of multiple
factors simultaneously. Researchers have applied ANNs in many fields
of study recently — medicine (Chesnokov, 2008; Grossi and Buscema,
2007), ice-condition forecasts (Wang et al., 2008), species-presence
prediction (Tirelli and Pessani, in press), animal-movement paths
(Dalziel et al., 2008), modelization of product–user preferences (Mas
et al., 2008), and predictions of motor vehicle crashes (Xie et al.,
2007).
2. Materials and methods

2.1. Study area and data collection

The study system consisted of 198 sites (Fig. 1) located along the
rivers in Piedmont, covering a total area of 25.399 km2.

Salmo marmoratus was recorded at 67 of the sampling sites,
corresponding to 33.38%.

Because data mining approaches are data-driven, they present
researchers with a key problem — which input variables to choose in
order to build the model. When large numbers of inputs are used in
data mining approaches, the models become more complex, the
calculation times increase, the field data collection efforts increase,
and the models become less clear. In this research project, we chose
variables according to their importance for fish fauna, as testified to in
the literature and by expert knowledge (Lek et al., 1996; Mastrorillo
et al., 1997; Olden and Jackson, 2001; Reyjol et al., 2001; Joy and Death,
2002, 2004; Laffaille et al., 2003; Olden et al., 2006). Therefore we
considered the following data set: 1) altitude; 2) length of the
sampling area; 3) homogeneity in width of the sampled tract (classes
0–5; the larger the widths of the sections examined, the larger the
value); 4) amount of human impact (classes 0–5; the larger the
impact, the larger the value); 5) amount of shade (classes 0–5; the
larger the shade, the larger the value); 6) shelters for fish, visually
assessed as the area consisting of undercut banks, macrophyte cover
and debris jams (classes 0–5; the larger the cover, the larger the
value); 7) percentage of bottom vegetation (algae and macrophytae)
(classes 0–5; the larger the vegetation, the larger the value); 8–9–10)
percentages (values from 0 to 100%, not classes of percentage) of the
sampled area with waterfalls classified according to their heights— 8)
falls with heights N1 m, 9) 0.5 m≤high≤1 m, and 10)b0.5 m; 11–12–
13) percentages (0–100%, not classes) of the sampled area classified
according to water speed and depth — 11) riffles (areas of quite fast
water with a broken-surface appearance), 12) pools (areas of slow,
quite deep water with a smooth surface appearance), and 13) flat
reaches (areas with smooth constant depth and water speed), each
reach surveyed and estimated visually; 14–19) percentages (0–100%,
not classes) of the sampled area classified according to ground surface
— 14) bedrock, 15) boulders and pebbles, 16) medium gravel (≥1 cm),
17) little gravel (1 cm b dimensions ≤2 mm), 18) sand (dimensions
b2 mm) and 19) silt; and 20) pH.

We chose to include the ‘length of the sampling area’ as a
predictive variable. Although hard to handle, the ‘length of the
sampling area’ is an important variable. The longer the sampling area,
the fewer the false negatives and the more certain the sampling. The
weight of this variable is undoubtedly higher in the samples where
S. marmoratus was found or was present but not detected.

The presence/absence of fish data as well as the values of all 20
variables in each sitewas obtained from the “Monitoraggio della fauna
ittica in Piemonte” (Piedmont Region, 2006). The data were collected
by a team of skilled ichthyologists in the spring, summer and fall of
2004. They used two types of single-pass electrofishing 1) with a
battery-powered electric fishing machine (A.G.K. IG 200/2) operated
at 150–300 V (the voltage varying according to the water conductiv-
ity); and 2) with an internal-combustion-engine machine (EFKO FEG.
8000), used when the water was deeper than 1.5–2 m.

2.2. Data-set preprocessing

Wenormalized the data proportionally beforewe used a data set to
build different models. We normalized so that, normalizing between 0
and 1, minimum and maximum of all river- and habitat-measured
data ranged between 0.05 and 0.95. In addition, we selected attributes
through the application of 2 different techniques — the best-first
search (Witten and Eibe, 2005) and Goldberg's genetic algorithm
(1989) (D'heygere et al., 2006; Obach et al., 2001; Schleiter et al.,

http://dx.doi.org/10.1002/rra.1199


Fig. 1. Map of the Piedmont Region showing the distribution of the 198 sampling sites: in black, positive samplings for Salmo marmoratus, in white, negative samplings.
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2001; Goldberg, 1989). These techniques involved searching among
the attributes for the subsets most likely to predict the class and
ultimately helped us obtain a subset of 7 inputs. These subsets are
altitude, length of the sampling area, shelters for fish, boulders and
pebbles, little gravel, silt, and pH.

We used discriminant function analysis, logistic regression,
decision trees and artificial neural networks for the classification
phase, including both the initial set of 20 features and the subset
features resulting from the feature selection.

2.3. Discriminant function analysis and logistic regression classification

We performed DFA and LR, in order to distinguish between sites
inhabited by marble trout and sites where they were not present. We
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used species presence or absence as the dependent variable and we
used river and habitat variables as the independent variables. Both the
analyses were performed with a forward stepwise entry of indepen-
dent variables.

The performances either of DFA or LR were estimated from a leave-
one-out jack-knifing involving a holdout procedure repeated 10 times
using a model derived from a calibration set of 80% of the sites — a
model which, in turn, was applied to the remaining test sites.

We performed the Mann-Whitney test in order to compare the
performance of the models before and after feature selection.

2.4. Decision tree models

2.4.1. Model building
We aimed to induce rules in the form of decision trees. Hence we

used the “top-down induction of decision trees”, a common technique
(Quinlan,1986), in order to generate rules relating the values of inputs
with the presence/absence of marble trout.

Weused the J48 algorithminourexperiments bothwithandwithout
a binary split. Briefly reviewing, the J48 is the Java re-implementation of
the C4.5 algorithm (Quinlan, 1993), one of the most well known and
widely used decision tree induction methods. A binary split is a
parameter of the J48 algorithm that decides whether a node can split
into just two branches or intomore than two branches.We ran the non-
parametricMann-Whitney test in order to compare theperformances of
the models built with binary splits and those built with multiple splits.
The outputs of themodels were discrete variables (presence or absence
of Salmo marmoratus), but all the inputs were continuous.

2.4.2. Optimization techniques
We applied the tree-pruning optimization method to reduce the

effects of noise in the data and to improve performance with regard to
the complexity and accuracy of the predictions. Tree-pruning is a
common way to cope with tree complexity. Optimal tree-pruning
eliminates errors due to data noise and therefore reduces the size of
models andmakes them clearer andmore accurate in their classification
(Bratko,1989).Wechosepost-pruning rather than forward-pruning.We
used both of the post-pruning operations available — subtree replace-
ment and subtree raising— and then compared the results obtained.We
controlled the intensityof pruningbychanging the confidence factor— a
parameter affecting the error rate estimate in each node between 0.15
and 0.25. The smaller the confidence factor, the larger the difference
between the error rate estimates of a parent node and its potential splits.
Thus, the smaller the confidence factor, the larger the possibility that
splits are replaced by leaves.

2.4.3. Model validation
We aimed to assess model performances. Hence we evaluated five

parameters on the basis of matrices of confusion (Fielding and Bell,
1997): 1) the percentage of Correctly Classified Instances (CCI),
frequently used when presence/absence of taxa is predicted; 2) model
sensitivity (the ability to predict species presence accurately); 3)
model specificity (the ability of the model to correctly predict species
absences); 4) Cohen's kappa coefficient (Cohen,1960); and 5) the area
under the receiver-operating-characteristic (ROC) curve.

The CCI are affected by the frequency of occurrence of the test
organism(s) being modeled (Fielding and Bell, 1997; Manel et al.,
1999b). Thus Cohen's Kappa coefficient is a more reliable performance
measure of presence/absence models because Cohen's k is negligibly
affected by prevalence (e.g. Dedecker et al., 2004, 2005; D'heygere
et al., 2006). Cohen's k gives a rather conservative estimate of
prediction accuracy because it underestimates agreements due to
chance (Foody, 1992). However, k values come from the information
content of the dataset, which has limited extractable information. For
this reason, Gabriels et al. (2007) suggest that different disciplines
may show differences in k threshold values. They assess the following
k values in a freshwater ecological context: 0.00–0.20: poor; 0.20–
0.40: fair; 0.40–0.60: moderate; 0.60–0.80: substantial; and 0.80–
1.00: excellent. In the area under the ROC curve, a value of 0.7
indicates satisfactory discrimination, a value of 0.8 good discrimina-
tion and 0.9 very good discrimination (Hosmer and Lemeshow, 2000).

Model training and validationwere based on stratified 10-fold cross-
validation (Kohavi, 1995). In order to estimate a reliable error of the
models, 10-fold cross-validation experiments were repeated 10 times
and the average predictive performance was calculated. This experi-
mental procedure allowed us to determine the 95% confidence limit of
theaveragepredictiveperformance.We ranMann-Whitney test in order
to compare theperformancesof themodels built respectively before and
after feature selection (unpruned and pruned).

2.5. Artificial neural network models

2.5.1. Model architecture
We built three layered feed-forward neural networks with bias and

developed them with the following architecture. Namely, there were
two options: 1) networks built using the initial set of 20 features and
2) networks built using the subset features resulting from the feature
selection. In each case there was 1 output node — for the presence/
absence of Salmo marmoratus. There was 1 hidden layer between the
input and the output layers with a number of neurons optimized by
trial and error. A single layer shortens the computation time and often
yields the same result as ANNs with multiple hidden layers (Kurkova,
1992; Bishop, 1995). The number of hidden neurons was chosen to
minimize the trade-off between network bias and variance (Bishop,
1995). We determined the optimal number of hidden neurons
empirically, by comparing the performances of different networks.
We tested many different types of architecture—with different values
of learning rates and momentums (range 0.1–0.5), different numbers
of epochs and different numbers of neurons in the hidden layer— until
we obtained the best predicting model. Then we chose the simpler
models — those with fewer hidden nodes — from the range of those
with similar performances. We did this for two reasons. Firstly, the
simpler network of two with similar performances is likely to predict
new cases better (Bishop, 1995). Secondly, the optimal network
geometry corresponds to the smallest network that captures the
relationships in the training data adequately (D'heygere et al., 2006).

2.5.2. Model optimization
We used cross-validation to be sure not to overtrain the networks.

Without cross-validation, in fact, a network can overfit the training data
and so be rendered unable to generalize previously unseen data during
the test phase. To this end, k-fold cross-validated neural networks were
trained using the error-back-propagation algorithm (Rumelhart et al.,
1986). The learning rate was set to 0.3 and themomentum set to 0.2 for
the initial set of 20 features. Both learning rate andmomentumwere set
to 0.2 for the subset features resulting from the feature selection. Cross-
validation method is particularly useful when the number of cases is
limited. During k-fold cross-validation, the data set is equally split into k
parts, the ANN model is trained with k-1 parts, and validated with the
rest. The procedure is repeated k times. Goethals et al. (2007) suggest
buildingdifferentmodels using a set of combinations of k between3 and
10, of k=number of cases/2 and k=number of cases–1, in order to
determine the best k value. Low k values can build robust ANN models,
which, however, usually have relatively low performances. For this
reason, a high k value should be used when there are just a few cases in
the dataset. Because of this fact, the ‘leave-one-out’ cross-validation
method (Efron, 1983) is often used in ecological study (Guégan et al.,
1998; Brosse et al., 2001, 2003; Beauchard et al., 2003). For these
reasons, we determined the optimal k value empirically by comparing
the performances of different cross-validated networkswhere k=3–10,
99, 197. Then, we performed the Mann-Whitney tests to compare the
statistical differences. The comparison was done on the basis of five
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parameters (those described in Materials and methods/Decision tree
models/Model validation). We then chose the model with the lowest k
value from among models with similar performances.

2.5.3. Model validation
We followed the same procedure as for DT models except for the

fact that we ran 10 stratified k-fold cross-validation experiments in
order to estimate the reliable error of the models. Then, we calculated
the average predictive performances and chose one of the 10 networks
(either among the 20-input networks or the networks with the 7
features resulting from the feature selection) included within this
range as the final network for our model. This experimental procedure
enabled us to determine a 95% confidence limit of the average
predictive performance. We performed the Mann-Whitney test to
compare the performance of the ANN models built with different
number of inputs and with decision tree models.

2.5.4. Model interpretation
We aimed to determine the importance of the inputs on the

outputs. Hence we chose sensitivity analysis from among the different
techniques available, as suggested by Hunter et al. (2000). A
sensitivity analysis indicates which input variables are considered
the most important by that particular neural network. Hunter et al.
(2000) analyzed sensitivity by replacing each variable in turn with
random values and assessing the effect of this upon the output error
(i.e. the RMS of the individual cross-entropy errors of the test cases). A
variable that is relatively important will cause a correspondingly large
deterioration in the model's performance. The more sensitive the
network is to a particular input, the greater the deterioration we can
expect, and therefore the greater the ratio. Once sensitivities have
been calculated for all variables, they may be ranked in order.

3. Results

3.1. Discriminant function analysis and logistic regression classification

Table 1 shows the mean performances of DFA and LR. The per-
formanceswere calculated froma leave-one-out jack-knifing involving a
holdout procedure repeated 10 times. We used a model derived from a
calibration set of 80% of the sites and then applied this model to the
remaining test sites. Themeanperformances and standard deviations of
DFA and LR were calculated on models built using both all 20 river and
habitat variables and only the 7 variables coming from feature selection.
We detected significant differences in sensitivity and specificity
between DFA and LR models. According to the tests, DFA had
significantly higher sensitivity values than LR (pb0.05). Conversely, LR
had significantly higher specificity values than DFA (pb0.05). This
resulted both in models with 20 inputs and those with 7 inputs.

3.2. Decision tree models

We inducedmodels for the prediction of the environment suitability
of marble trout by using the J48 algorithm with binary and multiple
splits.
Table 1
Performance of discriminant function analysis (DFA) and logistic regression (LR) execut
marmoratus.a

CCI Sen

Model DFA20 DFA7 LR20 LR7 DFA20 DFA

Mean 75.70 74.78 75.18 74.93 74.00 72.9
s.d. 2.13 3.04 3.26 3.51 4.22 4.8

Performances were calculated from a leave-one-out jack-knifing involving a holdout proced
a Percentage of correctly classified instances = CCI; sensitivity = sen; specificity = spe; d

using 7 inputs = DFA7; logistic regression using 20 inputs = LR20; logistic regression usin
The average and standard deviations of the five performance
parameters were calculated either for DT with a binary split or for DT
with a multiple split built using all the 20 features (Table 2). These
parameters were 1) percentage CCI, 2) sensitivity, 3) specificity, 4)
Cohen's k statistic, and 5) the area under the ROC curve of the 10
repeated 10-fold cross-validated unpruned and pruned DTs before
feature selection.

We performed the Mann-Whitney tests to compare all of the five
parameters used to assess for the performance among the multiple
models, among the binary models, and between multiple and binary
models before feature selection. No significant differences in the
predictive performance in any of the above tests were detected.
Therefore, for the trees built using the 7 inputs coming from feature
selection, we used only binary splits, on the basis of the paper by
Dakou et al. (2007), who obtained positive results in a similar
freshwater context. The average and standard deviations of the five
performance parameters for these last models were calculated
(Table 3). The percentage of CCI was not always very high. Cohen's k
statistic was relatively high in all the cases, but not enough to consider
the models reliable. In fact, these values of Cohen's k revealed that
most of the predictions were based on chance. Sensitivity always
reached high values (N78.6%), while specificity was around 60.0%. The
area under the ROC curve (0.73) indicated satisfactory discrimination.

Tree-pruning was performed for DTs built both before and after
feature selection (Tables 2 and 3). The unpruned trees had included a
large number of leaves, which made them more complex and
hindered an ecological interpretation (Tables 2 and 3). Pruning
usually allows researchers to make the models less complex and the
performance more efficient. Thus models with different intensities of
post-pruning were induced by varying the confidence factor between
0.15 and 0.25. The optimal confidence factor was 0.15 for the trees
built before feature selection and 0.17 for the trees built after feature
selection.

No significant increases were detected in predictive performances
among unpruned and pruned trees built using the 7 inputs. No
significant increases were detected also in predictive performances
between DTs built using 20 and 7 inputs.

3.4. ANN models

The optimization of the number of hidden neurons by trial and
error resulted in two different network architectures, according to the
number of inputs used.

In models built before feature selection, the final architecture
showed 20 input neurons, 10 hidden ones and 1 output. The
performances and reliabilities of the ANNs did not improve with
kN10 among the different k-fold cross-validations that were tested for
thesemodels. In fact, there were no statistical differences between 10-
and 99-fold cross-validated ANNs, according to the results of the
Mann-Whitney tests performed on the five parameters assessing the
performances of the ANNs. Thus we used 10-fold cross-validation to
build our model.

We calculated the average and standard deviation of percentage
CCI, of sensitivity, of specificity, of Cohen's k statistic and of the area
under the ROC curve of the 10 repeated 10-fold cross-validated ANNs
ed before and after feature selection, for predicting the presence/absence of Salmo

Spe

7 LR20 LR7 DFA20 DFA7 LR20 LR7

1 49.66 48.21 76.64 75.74 88.95 89.17
0 9.37 10.71 3.26 2.81 3.91 3.54

ure repeated 10 times.
iscriminant function analysis using 20 inputs = DFA20; discriminant function analysis
g 7 inputs = LR7; standard deviation = s.d.



Table 2
Predictive results of decision tree models based on the J48 algorithm without pruning
and with post-pruning optimization.a

Decision tree CCI k sen spe ROC

Binary split un Mean 72.23 0.38 79.17 58.79 0.71
s.d. 2.54 0.06 2.61 4.68 0.02

subre Mean 72.23 0.37 79.17 59.28 0.71
s.d. 2.54 0.05 2.94 3.97 0.03

subra Mean 72.80 0.39 79.51 60.00 0.73
s.d. 1.92 3.94 2.48 33.82 0.03

Multiple split un Mean 72.23 0.38 79.18 58.79 71.19
s.d. 2.41 0.05 2.48 4.44 2.34

subre Mean 71.74 0.37 78.27 59.29 70.99
s.d. 2.22 0.05 2.94 3.97 2.83

subra Mean 72.80 0.39 79.51 60.00 72.63
s.d. 1.92 0.04 2.48 3.38 2.58

The models were built with 20 inputs.
a Unpruned = un; subtree replacement = subre; subtree raising = subra;

percentage of correctly classified instances = CCI; sensitivity = sen; specificity =
spe; Cohen's k = k; area under the ROC curve = ROC; standard deviation = s.d.

Table 4
Predictive results of ANNs before and after feature selection.a

ANN CCI k sen spe ROC

20 inputs Mean 73.09 0.41 79.55 60.52 0.78
s.d. 3.40 0.07 4.84 5.61 0.02

7 inputs Mean 76.46 0.47 82.23 66.54 0.81
s.d. 3.44 0.08 2.79 5.88 0.03

Mann-Whitney test p b0.05 b0.05 n.s. b0.05 b0.05

a Percentage of correctly classified instances = CCI; sensitivity = sen; specificity =
spe; Cohen's k = k; area under the ROC curve = ROC; standard deviation = s.d.;
significance = p.
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(Table 4). We chose the final network from among these 10 inputs.
This network had quite a high percentage of CCI (78.31%), of
sensitivity (87.03%), of specificity (61.43%), a moderate k coefficient
(0.50) and an area under the ROC curve of 0.77. This last indicates that
the model discriminates in a satisfactory way (Hosmer and Leme-
show, 2000).

In models built after feature selection, the final architecture showed
7 input neurons, 4 hidden ones and 1 output. The performances and
reliabilities of the ANNs did not improve with kN5 among the different
k-fold cross-validations that were tested for the 7 input models. For
example, we report the results of theMann-Whitney test performed on
the five parameters assessing for the comparative performances of the
ANNs in 5- and in 10-fold cross-validation (10 is the most common in
use). The tests highlighted statistical differences only in k values,
showing that the ANNs with 5-fold cross-validation performed
significantly better than 10-fold cross-validation ones (pb0.05). Thus
we used 5-fold cross-validation to build our model.

The average and standard deviations were calculated of percentage
CCI, of sensitivity, of specificity, of Cohen's k statistic and of the area
under the ROC curve of the 10 repeated 5-fold cross-validated ANNs
(Table 4). The final network was chosen among these 10 inputs. The
final network showed very good performance and accuracy. This
network had a high percentage of CCI (81.82), a very high sensitivity
(86.48%) and a quite good specificity (74.83%). It had a very good k
coefficient (0.60) (Gabriels et al., 2007), one that yielded substantial
model performance. It had an area under the ROC curve of 0.85, one
that indicated that the model discriminated very well (Hosmer and
Lemeshow, 2000).

In addition, we conducted the Mann-Whitney tests to compare the
performances of the ANNs built with 20 and 7 features, respectively
Table 3
Predictive results of decision tree models based on the J48 algorithm without pruning
and with post-pruning optimization.a

Decision trees —

binary splits
CCI k sen spe ROC nl cl

un Mean 71.26 0.35 78.63 60.41 0.73 19 –

s.d. 2.51 0.05 0.02 0.05 0.03
subre Mean 71.51 0.36 79.07 59.64 0.73 11 0.17

s.d. 2.10 0.04 0.01 0.03 0.03
subra Mean 71.46 0.36 78.99 59.69 0.73 11 0.17

s.d. 2.51 0.04 0.01 0.03 0.03

The models were built using the 7 inputs coming from feature selection.
a Unpruned = un; subtree replacement = subre; subtree raising = subra;

percentage of correctly classified instances = CCI; sensitivity = sen; specificity =
spe; Cohen's k = k; area under the ROC curve = ROC; number of leaves = nl;
confidence level = cl; standard deviation = s.d.
(Table 4), showing that the ANNs built using 7 inputs performed
better than the ANNs built using 20 inputs (pb0.05).

Finally, we conducted the Mann-Whitney tests to compare the
performances of the 7-feature ANNs and the 7-feature binary DTs. The
tests showed that the ANNs performed better than the DTs (pb0.05)
in all cases.

The final ANN model we obtained clearly showed the influence of
all the 7 inputs used in modeling the presence/absence of the species
in Piedmont. The sensitivity analysis allowed us to rank the input
neurons according to their importance in building the model in the
following way: altitude, little gravel, boulders and pebbles, length of
the sampling area, silt, pH, and shelters for fish.

4. Discussion and conclusion

The objective of this study was to assess the effectiveness and to
compare the performances and reliabilities of different approaches to
predicting Salmo marmoratus presence in the Piedmont Region,
approaches that potentially can be applied more widely. In particular,
we comparedmultivariate techniques andmachine learningmethods.
Over the last decade, machine learning methods have become more
and more popular for modeling ecological ecosystems (e.g.: Lek and
Guégan, 1999; Debeljak et al., 2001; Recknagel, 2001; Dzeroski and
Todorovski, 2003; Brewer et al., 2007; Dakou et al., 2007; deKock and
Wolmarans, 2007a,b; Goethals et al., 2007; Lencioni et al., 2007;
Pivard et al., 2008). Their popularity is mainly due to the advantages
they offer over traditional statistical analyses when applied to
ecosystems. Natural systems, in fact, are characterized by highly
complex nonlinear relationships. Among machine learning techni-
ques, ANNs and decision trees have been recently shown to have a
high potential in habitat suitability modeling (Goethals and De Pauw,
2001; Dakou et al., 2007). For these reasons, we decided to use these
tools together with discriminant function analysis and logistic
regression in order to model the presence of an endangered
autochthonous species (S. marmoratus) and compare the results
obtained. The aim is to contribute to S. marmoratus management by
finding the approach that performs better and better describes the
relationships of species with the habitats they occupy.

The results we obtained are highly encouraging. In fact, these
results show that we can predict marble trout presence in Piedmont
with reasonable accuracy. They show how useful it is to compare
different approaches to modeling Alpine freshwater fish. In addition,
we can apply these techniques in other Italian regions and even in
other countries reasonably confidently.

4.1. Discriminant function analysis and logistic regression classification

Thesemultivariate techniques allowed us to classify approximately
75% of the sites correctly. In general DFA has higher sensitivity and
lower specificity values than LR both inmodels with 20 and thosewith
7 inputs. No differences in performance were detected between DFA
models with 20 and 7 inputs. There were not any differences between
LR models with 20 and 7 inputs, too. This is due to the fact that both
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the techniques use only variables of interest and not uninformative
ones.

Not all the modeling procedures performed well. This clashed with
the findings of Manel et al. (1999a). The performances of the LR
models we obtained are similar to those obtained by Manel et al.
(1999a). Nevertheless, the ANNs outperformed not only the LRmodels
but also all the other models. Our LR models showed much lower
sensitivity than specificity, as did those of Manel et al. (1999a), in spite
of the occurrence of S. marmoratus at 33.38% of the sampled sites.
Here, the prevalence effect warrants careful consideration.

4.2. Decision tree models

The decision tree models did not perform very well in each set of
models when the percentage of CCI and specificity were used as
evaluationmeasures. In fact, the CCI was ca. 71–72% and the specificity
was ca. 59–60%. Moreover, Cohen's k statistic showed that the models
yielded unreliable predictions, in that most of the classifications were
based on chance. On the contrary, the decision tree models did
performwell in relation to sensitivity (above 78%) and the area under
the ROC curve (satisfactory discrimination).

It is not clear why the models cannot make reliable predictions
despite the fact that the inputs we used do seem to be valid indicators
of various features of habitat suitability. Yet, these same inputs did
produce good classifications when used to run the other kinds of
models (DFA, LR, ANN). This is an important point.

Decision tree models may not be among the best performing
techniques to apply for predicting presence/absence of Salmo marmor-
atus. In fact, they do not perform well in relation to other species and
even taxa. For example, decision tree models did not perform well in
predicting macroinvertebrate taxa (Dakou et al., 2007). Their Cohen's k
values were even lower than those in the present study.

DT models were too complex, especially the unpruned trees with
their many leaves. Consequently, the results of DT models prevent an
ecologically interpetation. In fact, the trees could not yield any
information about the habitat suitability of S. marmoratus. The J48
algorithm produced very detailed trees, hampering themodels’ ability
to generalize. Therefore, we used pruning optimization to reduce tree
complexity. This allowed us to obtain simpler trees that could be
interpreted ecologically. We used just the post-pruning technique to
improve the performance and reduce the complexity of the models
because post-pruning was shown to perform the best (Dakou et al.,
2007). Tree-pruning did not result in a significant improvement of any
of the five parameters used to assess for model performances. Pruning
does decrease the complexity of the trees and the variance. However,
it increases the bias and hence only improves the accuracy of a model
slightly (Geurts, 2000; Dakou et al., 2007).

The DT models may not have performed well because of the
dimensions of the dataset and because of the fact that the frequency of
occurrence of S. marmoratuswas lower than 50%. In fact, the predictive
performance of models based on decision trees is strongly related to
the frequency of occurrence of the predicted taxa (Goethals et al.,
2001; Manel et al., 2001).

We used tree-pruning to gain an improvement in the clarity of the
models that are induced. This is themost important goal whenmodels
are built to make decisions about river restoration and conservation
management.

Moreover, feature selection allowed us to reduce the size of the
problem but did not help the DT models improve their performances.
In decision trees, the J48 algorithm chooses themost suitable attribute
to split at each branch of a tree. Therefore, we may expect that the less
suitable attributes would be chosen out. However, things are quite
different in practice. One researcher (John et al., 1994) reported that
performance decreased around 5–10% after a random binary attribute
had been added as an extra variable in a dataset. This was a feature
that we preferred to test. Therefore we can state, in this specific case,
that DTs can handle large-dimension datasets. The most evident side
effect of the use of a large number of inputs is an increase in
computational cost. Therefore, even though feature selection does not
affect the DTs performance, we recommend using feature selection in
order to contain computational costs.

4.3. ANN models

This approach is to be considered the most effective of the four
tools that we analyzed, a tool that contributes to the management and
the conservation of the species. In fact, ANN models allow us 1) to
understand the factors contributing to the presence/absence of the
species, using a reliable and modern technique and 2) to incorporate
multiple input parameters into a single model in a fast and flexible
way.

The ANN approach performed better than DFA, LR and DT. In
particular, the present research shows that the accuracy of ANN
classification improves when a small set of optimally selected features
is used. This is due to the improvement of signal-to-noise ratio and to
the reduction of overfitting. The selection stage serves to eliminate all
but the most relevant attributes and thus allows us to reduce the
number of input variables. We performed the selection in order to
help themodels predict more accurately (D'heygere et al., 2003, 2006;
Tirelli and Pessani, in press).

Moreover, the findings of the present research make it evident that
learning in ANNs is sensitive to the input data used. When researchers
select the appropriate features through preprocessing, the perfor-
mances of their models in an ecological context are improved con-
siderably. Preprocessing calls for just a small additional effort since
preprocessing techniques are not time/computing intensive. This is
true for any learning algorithm since the complexity of the data used
directly affects the learning algorithm's performance (Piramuthu,
2004). In fact, the irrelevant information in ANNs without variable
selection passes through the nodes, possibly influences the connec-
tion weights slightly, and affects the overall performance of ANNs.
Moreover, variable selection allows researchers to decrease ANN size.
This reduces computational costs, increases speed, and uses less data
to estimate connection weights efficiently.

When proper feature selection is applied in ecological contexts, it
makes a crucial contribution to species management and to the
planning of protective measures, especially in regard to presence/
absence predictions of endangered taxa.

The high performance level of ANN modeling makes it the most
useful technique for application to Salmo marmoratus management.
S. marmoratus were present at 33.38% of the sites. For this reason, the
10 ANNmodels predicted the high average number of presences of the
species correctly and the final network that was chosen was highly
sensitive. On the other hand, low occurrence causes low sensitivity.
This coincides with the results of other research projects (Manel et al.,
1999a, 2000, 2001; Olden and Jackson, 2002; Olden et al., 2002; Oakes
et al., 2005). In general, ANNs, like DTs, predict more accurately when
there are more occurrences of the species under examination (Spitz
et al., 1996; Mastrorillo et al., 1997; Manel et al., 1999a; Tourenq et al.
(1999). ANNs predict especially accurately when the number of
presences and absences is just about the same (Tourenq et al., 1999).
This is obviously a problem because in ecology, especially for rare
species, absences are of course more frequent than presences. High
levels of correctly predicted presence are particularly important in
instances where the presence of scarce species is predicted for
conservation purposes — for example, in identifying areas for
protection or management of rare species. This fact underlines once
more the value of the ANN approach to modeling S. marmoratus
presence. Moreover, the ability of ANNs to classify previously unseen
cases will eventually allow researchers to use the network reported
here to analyze new inputs coming from different geographic areas in
order to plan larger scale protection actions. ANN technique allows for
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an objective, statistically robust, site-specific prediction of the species
presence to be made, without extensive field analysis, therefore
permitting researchers to save time and money during the survey
phase of the project. This is due to the fact that the model used is
reliable even though based on few, easily detectable, environmental
parameters.

We should emphasize something. In our research project, we built
both DTs and ANNs accurately — varying a series of parameters for
each kind of approach — in order to obtain the most reliable and
best performing models (Olden, 2007). Secondly, we ran 10 stratified
k-fold cross-validation experiments and then calculated the average
predictive performance. In this way we found the range of per-
formances of the models. We also ran 10 experiments in the case of
DFA and LR and then calculated the average predictive performance.
Out of all these models, it was the 10 ANN experiments that out-
performed the other experiments.

The performances of the reduced model that we obtained also
suggest that there was an accurate link between S. marmoratus and
the variables used to build the model itself. This again underlies the
fact that researchers need to perform a correct feature selection before
running the models. In addition, the sensitivity analysis showed that
all the 7 input variables considered had effects on the presence/
absence of S. marmoratus. This further demonstrated the correctness
of the input choices that we made.

After this discussion on data processing, our findings do have
something to report about the physical environment of S. marmoratus
itself — i.e. elevation, bottom granulometry, fine suspended sedi-
ments, and shelters.

Altitude plays a great role in building the models because it is good
integrator of the thermal conditions. In this regard, our findings
coincide with findings on Salmo trutta (Baran et al., 1993, 1995; Lek
et al., 1996) and with findings on the fish community inhabiting the
Wellington Region (Joy and Death, 2004).

Bottom reaches of boulders and pebbles are important for the
presence of marble trout, as our findings seem to show. In this regard,
these findings on the granulometry of the bottom are only partially in
agreement with studies on brown trout (Vlach et al., 2005; Scheurer
et al., 2009). In fact, Vlach et al. (2005) have often found Salmo trutta
adult specimens on sandy or muddy bottom. In contrast, we found
that bottom reaches of boulders and pebbles were important for the
presence of marble trout. Seemingly, marble trout avoid sand and silt
bottoms because they need to avoid physical alteration and infections
or because these bottoms interfere with their reproductive behavior.

Fine suspended sediments are an important factor for S.marmoratus.
Prolonged exposure to fine suspended sediments can affect fish health
and behavior (Alabaster and Lloyd, 1980; Newcombe and MacDonald,
1991; Berry et al., 2003; Scheurer et al., 2009). Specimens show signs of
sub-lethal stress at values of fine sediments lower than 90mg/l. These
symptoms include changes in blood chemistry, gill- or skin- epithelia
damage, and the resulting increased number of infections. An environ-
ment with fine sediments can even cause higher mortality rates (Berry
et al., 2003; Scheurer et al., 2009). Exposure tofine sediments during the
incubation period can delay the emergence of fry, alter the natural
emergence pattern (Fudge et al., 2008; Scheurer et al., 2009), and have
negative repercussions on the entire reproductive cycle. Also, fine
sediment reduces interstitialflowandoxygen supply, increasingembryo
mortality and decreasing emergence success (Chapman, 1988).

Another important factor for S. marmoratus is the number of
shelters. This species thrives when there are more shelters. This
coincides with findings that shelters have a great impact on brown
trout density when they reach percentages lower than 2% (Lek et al.,
1996).

Our research project leads us to conclude in this way. We
recommend that researchers use various techniques to build pre-
sence/absence models in order to compare their prediction accuracy
and their performances and in order to evaluate the importance of the
input variables used to build the model. Such a use of different
approaches allows researchers to avoid the risk of choosing a model
that is not properly suited to approaching the problem, which is what
would have happened if the present research project had been based
on fewer approaches.
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